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Overview

Our Work Position

* Data Parallel Distributed Deep Learning
» Second-Order Optimization
* Improve Generarization

Key Takeaways

» Second-order optimization can converge faster than first-order optimization with low
generarization performance
* Smoothing loss function can improve second-order optimization performance
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1. Introduction / Motivation

Improvement of recognition accuracy and increase of training time with increasing number of parameters of
convolutional neural network (CNNY,
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Fig1 : [Y. Huang et al, 2018]

The figure shows the relationship between the recognition accuracy of ImageNet-1K 1000 class classification and the number of
parameters of DNN model.

DNNs with a lot of parameters tend to show high recognition accuracy



1. Introduction / Motivation

Importance and time required of hyperparameter tuning in deep learning

In deep learning, tuning of hyper- ﬁi
parameters is essential

Hzlperparamefers:
* Learning rate

* Batch size

* Number of training iterations

* Number of layers of neural network
* Number of channels

Pruned trials

Cross-entropy loss

Even with the strategy of pruning, many
trials with training to the end is 0.5
necessary |J. Bergstra et al. 2011] —

0 20 40 60 80 100

Epochs

Fig3 : Pruning method in parameter tuning ref (https://optuna.org)

It takes 256GPU hours* to train Resnet 50 with 25M
parameters(Convergence to Top1-Accuracy 75.9%) x Multiple Evaluations

%In case using NVIDIA Tesla P100+ as GPUs T; I(A for h :
+ https://www.nvidia.com/en-us/data-center/tesla-p100/ Ime taken for yper'PC”'amefer funmg



https://optuna.org

1. Introduction / Motivation

Necessity of distributed deep learning

It takes 256GPU hours* to train Resnet 50

with 25M parameters(Convergence to Time taken for

Top 1-Accuracy 75.9%) x Multiple Evaluations | < hyperparameter

%In case using NVIDIA Tesla P100+ as GPUs tuning
+ https://www.nvidia.com/en-us/data-center/tesla-p 100/

Hyper-parameter tuning Is necessary,
which requires a lot of time to obtain DNN with high recognition accuracy

Speeding up with 1 GPU is important, but there is a limit to speeding up

!

Needs to speed up by distributed deep learning

!

In large mini-batch training for accelerating,
the recognition accuracy finally obtained is degraded
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2. Background / Problem 9

Three Parallelism of Distributed Deep Learning

Mini-Batch Mini-Batch

v v

Traning Process N |

Parameter Server Traning Process 0
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Fig5: How to communicate
* The parallelism of distributed deep learning is mainly the following three
'A. What; "B. How, 'C. When,
NS » TA. Whaty Data parallel is essential for speeding up
‘»/t«v;\\ » TB. How. Adapt collective communication method for speeding up
» T'C. When, There are pros and cons, and it is an unsolved problem that it is
better to adopt which. In this research, we deal with synchronous type as in the
previous research [J. Chen et al, 2018]

:Computation
|

Figb: When does parameter update



2. Background / Problem

Three Parallelism of Distributed Deep Learning

Synchronous Data Parallel Distributed Deep Learninig

Expect speedup by increasing the batch size
=> Large Mini-Batch Training

Single GPU Training / Small Batch Training

K = rorwerd i Backward i Update )

e.g. batch size = 1
Multi GPUs Training / Large Batch Training

Forward H Backward h H Update »
Forward H Backward h AII-Reduce# Update »
Forward H Backward h H Update »

Fig7: Difference Between Distributed Deep Learning and Deep Learning



2. Background / Problem

Three Parallelism of Distributed Deep Learning

Increasing Mini-Batch Size
= | Input data used for one update]

Synchronous Data Parallel
Distributed Deep Learning
= Large Mini-Batch Training

Validation Accuracy

LB training is fast but training ; ;
accuracy is low | e I e

y, i

e ' ' ' N

i . ......... SB training takes time to converge, but |..
5 5 5 the training accuracy is high

Training with large mini-batch
(LB) in SGD is generally faster in
training time than with small mini-
batch (SB), but that the achievable

recognition accuracy is
degraded |Y. Yang ef al. 2017]

—— Large Mini-Batch Training

— Small Mini-Batch Training

Fig8 : Convergence accuracy and training time at SB/LB using SGD Training Time



2. Background / Problem

Difference between Large Mini-Batch Training and Small Mini-batch Training

Large Mini-batch Training is not the same optimization as Small Mini-Batch Training
There is a problem due to two differences

Supervised Learning (Optimization Problem)

Loss Function  Objective Function

Z Ly, f(x;0)) = argmm E(0)
(x,y)€S S' : Train Data

0" = arg mm

IS\

By Increasing the Batch-Size S|,
It is expected to converge in more accurate
directions with less iterations

Fig9 : Left figure (LB training update appearance), Right figure (SB training update appearance)



2. Background / Problem

13

Difference between Large Mini-Batch Training and Small Mini-batch Training and Problems

Problem 1.

Decreased number of iterations (humber of updates)
1 epoch

A

(

\
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1 iteration

Multi GPUs TN
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——————————

The recognition

—b=2048, adapted regime  QCCUracy does
—b=4096, adapted regime  not deteriorate

by increasing the
number of
iterations [E.

____ Hoffer et al.
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(b) Validation error - zoomed

Y Y

————— 2018]
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Fig10 : [E. Hoffer et al. 2018]

=> But that doesn't allow for speeding up by

distributed deep learning

Problem2 .
The gradient of the objective function is more accurate

and the variance is reduced

sharp flat
Fig11: Concept Skech of Sharp Minimum and Flat Minimum

Good generalization is In LB training, the noise is not
expected because it is appropriate and generalization
possible to adjust noise in SB performance is degraded [S.

training [S. Mandt et al 2017]  Smith et al. 2018]

=> It is necessary to prevent the accuracy
degradation that is a side effect of speeding up



2. Background / Problem

Two Strategy to deal with Problems

Problem 1.

Decreased number of iterations
(humber of updates)

=> Have to converge with few iteration

Strategyl.
Use of natural gradient method (NGD)

1

6" = arg min s > Lly, f(x;6))

0
(x,¥)ES

In large mini-batch training, the data for each batch is
statistically stable, and using NGD has a large effect of
considering the curvature o?fhe parameter space, and the
direction of one update vector can be calculated more
correctly [S. Amari 1998]. Convergence with fewer
iterations can be expected

14

Problem2 .

The gradient of the objective function is
more accurate and the variance is reduced
=> Have to avoid SharpMinima

Strategy 2.
Smoothing the objective function

By linear interpolation of the input data in large mini-batch
training, the convergence to Flat Minimum is promoted in
optimization of the ?oss function, and generalization
performance is aimed to be improved?
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3. Second Order Optimization Approach

Mini-Batch Training

* Gradient Descent

DNN has a large number of parameters
-> Gradient method using loss function gradient that is easy to calculate is mainstream

« SGD; Stochastic Gradient Descent

Large-scale Training data
-> Randomly extract a small number of training cases (on-line stochastic optimization)
-> Process multiple training data in parallel(mini-batch)

Stochastic Gradient Descent Method using Mini-Batch

Gradient of loss function

oUtt) = 9 — Y VL(y, f(x;6))

B \
(x,y)eB 51
O(t) : Parameter after {, times update VI = %

€ > () : Learning Rate S O B : mini-batch (randomly extract)



Problem 1.

Decreased number of iterations
(humber of updates)

=> Have to converge with few iteration

Strategyl.
Use of natural gradient method (NGD)

6" = arg min| > Ly, f(x;0))

)
(x,¥)ES

5]

In large mini-batch training, the data for each batch is
statistically stable, and using NGD has a large effect of
considering the curvature o?fhe parameter space, and the
direction of one update vector can be calculated more
correctly [S. Amari 1998]. Convergence with fewer
iterations can be expected




3. Second Order Optimization

Gradient Descent and Natural Gradient Method

Approach

0*

= arg mm
IS |

(x,y)€S

Stochastic Gradient Descent

* It is difficult to get out of local solutions and plateaus
* When the learning rate is increased, the values vibrate
and diverge at the saddle point

Stochastic Gradient Descent (SGD)

Gradient of Loss Function

plttl) = 9t) _ eV E(91)

Supervised Learning (Optimization Problem)

Y Ly, f(x;0)) = arg min £(6)

Loss Function  Objective Function

S : Train Data

Natural Gradient Descent

* An optimization method proposed by [S. Amari 1998] based

on information geometry

* Use Fisher information matrix as Riemann metric (= curvature
matrix)

» Set the update direction well and expect faster convergence

Natural Gradient Descent (NGD)
p(t+1) —

Grad:enf of Loss Function

0 — eF, s VE(OW®)
F@(t). Fisher Information Matrix



3. Second Order Optimization Approach 10

Natural Gradient Method Pros and Cons in deep learning

Pros Cons

* It is expected to converge with a smaller number of * Inverse calculation of huge N x
iterations compared to ?an improved method of) SGD N) is required for huge parameters

* It is expected that model parameters can be updated in * For example, about N = 3.5 x 106 (abouf 12 PB memory
the correct direction using the gradient curvature of the consumption) for ResNet-50

statistically stable loss function when the batch size is large

Natural Gradient Descent (NGD)

Gradient of Loss Function

© AU+ = 9lt) — e \NVE(OW®)

minimum O (t

F@(t): Fisher Information Matrix

Natural Gradient
Approximation Method

Fig12: [J. Matt et al. 2017]




3. Second Order Optimization Approach

Three strategies to Approximate the Natural Gradient (K-FAC)

Natural Gradient Descent (NGD)

Gradient of Loss Function

o(t+1) — p(t) _ VE(Q(t))

Fg(t): Fisher Information Matrix

NGD Approximation Method : K-FAC

It is difficult to calculate the inverse of Fisher
information matrix (FIM) in the update
equation, considering the number of
parameters of recent DNN.

3 Strategies to Approximate

(DApproximate FIM (and inverse) F F

N. Roux et al., 2008, D. Kingma et al., 2015, Approximation i)

R. Grosse et al., 2015, [J. Martens et al., 2015], ﬂ?;heci)“gd by . .
P. Luo, 2016, [R. Grosse et al., 2016], this work :

A. Botev et al., 2017, [J. Ba et al., 2017] K-FAC

" Block diagonal

approximation using approximation of Fisher A
|
|
|
\4

Kronecker factorization information matrix

(2Bring the FIM closer to the identity matrix
K. Cho et al., 2013, G. Desjardins et al. 2015,
B. Neyshabur et al., 2015, T. Salimans et al., 2016

A Expectation
|
|
|
v

Approximate update vector
S. Krishnan et al., 2017

Inverse Fseudomafrix of
Fisher's information matrix

Fig13: [J. Martens et al., 2015]



3. Second Order Optimization Approach

Experimantal Methodology

Data Set : CIFAR-10
The CIFAR-10 dataset is a data set of 32 x 32 pixels (RGB)

color image labeled with 10 classes of {airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck}.

airplane ﬁ%\ V-.=&=_
automobile Eh‘
bird aiu ﬂ;?\ W .
o EEUEEEEE P
deer

v EESE GO
frog m.-...
horse ..mm-!'m
o e Sl -
truck "h'in

DNN Model :

Lenet5

Lenet5 which is a simple multilayer neural network model by the
structure proposed by LeCun et al was used as a DNN model.

Layer Type Description
Convolution | Filter Size 5x35, Output Channel 6
MaxPooling | Kernel Size 2Xx?2
Convolution | Filter Size 5x35, Output Channel 16
MaxPooling | Kernel Size 2Xx?2
FC Output Size 120
FC Output Size 84
FC Output Size 10
Table1 : Network configuration of lenet5 iy
) .
X321 28).(28)(6 14x14x6  10x10x16  5yx5x16 120 ____________ 84_ ...... 10
— O &= ﬂ ____:::ffiir*u
conv5x5, 16 maxpool2x2
conv5x5, 6 Maxpool2x2 stride (1, 1) stride (2, 2) dense  dense
stride (1, 1) stride (2, 2)
flatten dense

Figl4 : Category of training data set CIFAR-10 used in experiment and its sample example

Fig15 : Network configuration of lenet5



3. Second Order Optimization Approach

Experimantal Methodology

Program for Training: Chainer, PyTorch

Using Chainer, which is an open source software library for machine learning, we constructed the DNN

model and implemented its training with the programming language Python.
We use Chainer_K-FAC to implement distributed deep learning using K-FAC.

For visualization of the loss function, PyTorch which is an open source software library for machine learning

was used with reference to [L. Hao et al. 2018]

Computational Environment: (ABCI; Al Bridging Cloud Infrastructure)

All experiments were performed on the ABCI(Al Bridging Cloud Infrastructure) supercomputer at AIST.
For the experiment, one computation node is used, and one node consists of NVIDIA Tesla V100 x 4GPU and Intel Xeon

Gold 6148 2.4 GHz, 20 Cores x 2CPU.

CentOS 7.4, nyhon 3.6.5, cuDNN 7.4, CUDA 9.2 are used as the software environment.Table2 : Hyper Parameter used in Experiment

Training Strategy

The model of the network is trained using mini-batch extracted randomly
from the training data, and SGD / K-FAC is used as the optimization
method. It is used that learning rate decay for stabilizing convergence,
weight decay for suppressing over training of values of parameters during
training and momentum for adjusting the steepest vector calculated during

frci)i;'ning. The hyperparameter used in this experiment is shown in right
table.

Weight Decay

le-4

Momentum

0.9

Learning Rate(SB SGD)

S5e-3 — 2.5e-3 (71epoch)

Learning Rate(SB SGD no mixup)

le-3 — Se-4 (7lepoch)

Learning Rate(LB SGD)

le-2 — Se-3 (7lepoch)

Learning Rate(LB SGD no mixup)

S5e-3 — 2.5e-3 (71epoch)

Learning Rate(SB K-FAC)

S5e-3 — 2.5e-3 (71epoch)

Learning Rate(SB K-FAC no mixup)

2e-3 — le-3 (71epoch)

Learning Rate(LB K-FAC)

8e-3 — 4e-3 (7lepoch)

Learning Rate(LB K-FAC no mixup)

4e-3 — 2e-3 (7lepoch)

Mixup Alpha(SB K-FAC)

0.9

Mixup Alpha(LB K-FAC) 0.7
Epoch 150
Batch Size 128 or 2048




3. Second Order Optimization Approach

Experimantal Result

Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Advantage)

1.0
K-FAC can converge faster U e
I,
0.8
K-FAC achieved
. 06- better accuracy
S
-
o
4y
—
& -—- SB kfac / Acc:71.49% (epoch 71)
£ 0.4 -
— SB kfac / Acc:71.49% (epoch 71)
K—FAC —-—~ LB kfac / Acc:70.02% (epoch 71)
— LB kfac / Acc:70.02% (epoch 71)
-==- SB sqgd /Acc:62.53% (epoch 95)
0.2 - —— SB sgd / Acc:62.53% (epoch 95)
SGD ——=- LB sgd/Acc:62.50% (epoch 148)
—— LB sgd / Acc:62.50% (epoch 148)
- == Train Accuracy
—— Test Accuracy
0.0 | J | ! ! | ! !
0 20 40 60 80 100 120 140
epoch

Fig16: Training of CIFAR 10 in LeNet5 using SGD/K-FAC method. SB shows batch size 128, LB shows batch size 2K.



3. Second Order Optimization Approach

Experimantal Result

Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Advantage)

1.0

-—=- SB kfac / Acc:71.49% (epoch 71)
SB kfac / Acc:71.49% (epoch 71)
LB kfac / Acc:70.02% (epoch 71) |
LB kfac / Acc:70.02% (epoch 71)
SB sgd / Acc:61.30% (epoch 71)
SB sgd / Acc:61.30% (epoch 71)
LB sgd / Acc:60.17% (epoch 71)
LB sgd / Acc:60.17% (epoch 71) .|
Train Accuracy
Test Accuracy

topl-accuracy

K-FAC training can acheive better accuracy
by comparing with SGD at the same iterations

0.5 | | | | | | | | !/
60 70 80 90 100 110 120 130 140 150

epoch

Fig17: ZOOM :Training of CIFAR 10 in LeNet5 using SGD/K-FAC method (same epochs). SB shows batch size 128, LB shows batch size 2K.



3. Second Order Optimization Approach

Experimantal Result

Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Disadvantage)

1.0
LB K-FAC training CANNOT acheive almost same accuracy by -~~~ 3B klac/Acc:71.49% (epoch 71)
] ing the number of iterations — 5B kfac/Acc:71.49% (epoch 71)
Incredsing ] -—- LB kfac / Acc:70.02% (epoch 71) |
0.9 - —-—-~/\-"’~f’~\/"“\’"’\'/\ ----- Vvl T TR T —— LB kfac / Acc:70.02% (epoch 71) -
' ,~’ ——- SBsgd / Acc:62.53% (epoch 95)
/ —— SB sgd / Acc:62.53% (epoch 95)
/ ——- LB sgd /Acc:62.50% (epoch 148)
/ e T e T e N e N T TS TN = e  etinigbainband IobdSial Lol dobgb 2 —— LB sgd / Acc:62.50% (epoch 148) { -]
> 08 ’\",\\’\ ,a",,/ —== Train Accuracy
§ ; / — Test Accuracy
8
'
2
g o7 The Accuracy
degradation of K-FAC
: 0
is 1.47%
0.6 . °
0
That of SGD is 0.03%
0-5 | 1 1 | | 1 1 | 1
60 70 80 90 100 110 120 130 140 150
h . .
oL LB SGD training can acheive almost
Fig18: ZOOM :Training of CIFAR 10 in LeNet5 using SGD/K-FAC method. Sam% G’CC‘]{' acy by increasing the
SB shows batch size 128, LB shows batch size 2K. number of iterations
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Problem?2.
The gradient of the objective function is
more accurate and the variance is reduced

=> Have to avoid SharpMinima

Strategy 2.
Smoothing the objective function

By linear interpolation of the input data in large mini-batch
training, the convergence to Flat Minimum is promoted in
optimization of the ?oss function, and generalization
performance is aimed to be improved?



4. Proposal to improve generarization

Sharp Minima and Flat Minima

Q, Why does the generalization performance of large mini-batch training deteriorate?

-> Because it converges to SharpMinimum for LB (large batch size) and FlatMinimum for SB (small
batch size) [N. Keskar et al, 2017]

FlatMinimum :

characterized by a significant
number of large positive
eigenvalues in V2f(x), and
tend to generalize less well

Optimal solution

Loss Training Function

®
/
/
/
/
o
/

\

-
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Testing Function

SharpMinimum .

characterized by having
numerous small eigenvalues of

V2f(x).

Optimal solution
converged by LB Training

! 1
\
d by SB Trainin < -
converge ) 4 g | T "e. - s Variables (parameters)

-~

Flat Minimum Sharp Minimum

Fig19 : A Conceptual Sketch of Flat and Sharp Minima

Aim to converge on Flat Minimum, not Sharp Minimum

-> Our Strategy : Use of Data Augmentation



4. Proposal to improve generarization

Data Augmentation

Data Augmentation

» Generate training samples with artificial noise added to training data
» Especially in image recognition, clipping, inversion, deformation, addition of noise, RGB value manipulation,

etc. are common. [P. Y. Simard, et al., 2004]
* Performance improvement is expected by adding the generated image to the original data for training

Fig20 : Data Augmentation (inversion / cut out example)



4. Proposal to improve generarization

Mixup: Data Augmentation Method for Linear Interpolation of Training Data

Mixup [H. Zhang et al. 2018]

» Linear interpolation of both label / data from two data to
* Data Augmentation methods, such as Mixup, are not developed for the improvement of generalization performance

in large mini-batch training.
* However, as a solution to the reduced noise and variance that is a problem in large mini-batch training, we verified

whether generalization performance can be improved by playing the role of objective function smoothing.

f0* = arg min —-

Optimization Problem:

Try Smoothing of Loss Function by Linear Interpolating Input Data x

—

From training data (.CB?;, y,,;), (.Cljj, yj) Which are randomly selected
Generate a new training sample (f, g’j) as follows

T=Mx;+(1—XNz; Xe€l0,1],\ ~ Be(a, a)
y=Ayi + (1= Ay,



4. Proposal to improve generarization

Mixup: Data Augmentation Method for Linear Interpolation of Training Data

Mixup [H. Zhang et al. 2018]
» Linear interpolation of both label / data from two data to

From training data (CBZ', yi), (.Clij, yj) Which are randomly selected
Generate a new training sample (CE, ?j) as follows

T=x;+ (1 —XNx;|Ae[0,1],\ ~ Be(a, a)
y=Ayi+(1—=ANy;

. Thus, by using the beta distribution,
finer tuning can be performed for interpolation of training data

beta distribution alpha=0.3 beta distribution alpha=0.5 beta distribution alpha=0.7 beta distribution alpha=1.0
1.50 1.0 —
3.0 H ﬂ 2.0 h ” [wv !
25 1.25 0.8
1.5
1.00
2.0 0.6
1.5 10 0.75
0.4
1.0 0.50
0.5
0.5 0.25 0.2
0.0 } \ 0.0 } \ 0.00 ) \ 0.0 ) \
0.0 0.5 1.0 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 100

Fig21 : Example of Beta distribution (distribution chart in 10000 trials)



4. Proposal to improve generarization 39

Mixup: Data Augmentation Method for Linear Interpolation of Training Data
Alpha=0.3 Alpha=0.5 Alpha=0.7 Alpha=1.0

h o original 0 : ship original 1 : frog mixup alpha=0.3, lam=0.632 mixup alpha=0.5lam=0.017 mixup alpha=0.7 lam=0.242 mixup alpha=1.0, lam=0.406
Ship - Frog Lam - Lam - Lam - Lam -

5 ' = 0.63 £210.02 0.24: 0.41:

[ ] [ ] [ ] [ ]

10 10 10 10 10 10

13 13 1 13 13 13

20 20 20 20 20 20

Fa pal pa! pa} pa! Fa

) £ £ £ £ )

0 s 1 13 2 »#» D 0 s W 13 22 B/ 2 0 s 1 13 22 ®» 2 0 s 1 13 2 #» D 0 s 1 13 2 #/ 2 0 s W 13 22 » 2

original 0 : cat original 1 : bird mixup alpha=0.3, lam=0.994 mixup alpha=0.5lam=0038 mixup alpha=0.7 lam=0.5009 mixup alpha=1.0, lam=0.472

Bird Lam’T @ ™ Lam’ ™
1

. *. ik 0.51 10421

il
| | | | | | 1 |
0 3 10 13 2 3 E 0 3 10 13 2 i 0 0 3 10 13 2 3 E { 3 10 13 20 s} E { 3 10 13 2 i} 0

¥ b B

original 0 : truck original 1 : horse mixup alpha=0.3, lam=0.620 mixup alpha=0.5lam=0.091 mixup alpha=0.7,lam=0.123

Q0 3 10 13 20 s 0 0 3 10 13 20 s E 0 35 10 13 20 s E 0 3 10 13 20 s 0
beta distribution alpha=0.3 beta distribution alpha=0.5 beta distribution alpha=0.7 beta distribution alpha=1.0
1.50 1.0
3.0 20
25 1.25 0.8
1.5
20 1.00 0.6
15 1.0 0.75
0.4
10 0.50

Fig22 : Example of the training image generated by Mixup 05 } ” } \ o o \ 02 J k
and the relationship between Beta distribution 00 00 000 00

0.0 0.5 1.0 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00



4. Proposal to improve generarization 33

Calculation method of training loss using Mixup

This image is used to evaluate Loss

Fig23 : Example of learning image generated by Mixup and Lambda

onginal 0 : ship onginal 1 : frog mixup alpha=0.7 lam=0.242

Ship Lossx A+  Frog Loss x (I-A\) = Mixup (Ship and Frog) Loss
Since A = 0.242 this time, the loss is large if it can not be inferred as a Frog than Ship



4. Proposal to improve generarization

Experimantal Methodology

Data Set : CIFAR-10
The CIFAR-10 dataset is a data set of 32 x 32 pixels (RGB)

color image labeled with 10 classes of {airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck}.

airplane ﬁ%\ V-.=&=_
automobile Eh‘
bird aiu ﬂ;?\ W .
o EEUEEEEE P
deer

v EESE GO
frog m.-...
horse ..mm-!'m
o e Sl -
truck "h'in

DNN Model :

Lenet5

Lenet5 which is a simple multilayer neural network model by the
structure proposed by LeCun et al was used as a DNN model.

Layer Type Description
Convolution | Filter Size 5x35, Output Channel 6
MaxPooling | Kernel Size 2x?2
Convolution | Filter Size 5x35, Output Channel 16
MaxPooling | Kernel Size 2Xx?2
FC Output Size 120
FC Output Size 84
FC Output Size 10
Table1 : Network configuration of lenet5 iy
) .
X321 28).(28)(6 14x14x6  10x10x16  5yx5x16 120 ............ 84. ...... 10
— @.—/"\Er—’z— L= ﬂ _____:::fffr:=0
conv5x5, 16 Maxpool2x2 “
conv5x5, 6 Maxpool2x2 stride (1, 1) stride (2, 2) dense  dense
stride (1, 1) stride (2, 2)
flatten dense

Figl4 : Category of training data set CIFAR-10 used in experiment and its sample example

Fig15 : Network configuration of lenet5
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Experimantal Methodology

Program for Training: Chainer, PyTorch

Using Chainer, which is an open source software library for machine learning, we constructed the DNN
model and implemented its training with the programming language Python.

We use Chainer_K-FAC to implement distributed deep learning using K-FAC.

For visualization of the loss function, PyTorch which is an open source software library for machine learning
was used with reference to [L. Hao et al. 2018]

Computational Environment: (ABCI; Al Bridging Cloud Infrastructure)

All experiments were performed on the ABCI(Al Bridging Cloud Infrastructure) supercomputer at AIST.
For the experiment, one computation node is used, and one node consists of NVIDIA Tesla V100 x 4GPU and Intel Xeon

Gold 6148 2.4 GHz, 20 Cores x 2CPU.
CentOS 7.4, nyhon 3.6.5, cuDNN 7.4, CUDA 9.2 are used as the software environment.Table2 : Hyper Parameter used in Experiment

Weight Decay le-4
e o Momentum 0.9
TI‘CIInIng S'l'I‘CII'egy Learning Rate(SB SGD) 5e-3 — 2.5e-3 (7lepoch)
. . . .. Learning Rate(SB SGD no mixup) le-3 — Se-4 (7lepoch)
The model of the network is trained using mini-batch extracted randomly Learning Rate(LB SGD) [c2 5 503 (Tlepoch)
from the training data, and SGD / K-FAC is used as the optimization Learning Rate(LB SGD no mixup) | 5e-3 — 2.5¢-3 (7lepoch)
method. It is used that learning rate decay for stabilizing convergence, Learning Rate(SB K-FAC) Se-3 — 2.5e-3 (71epoch)
ight decay for suppressing over training of values of parameters durin LEETIE KalssD KA\ 10 mixup) | 2o = l6- U/ tepocy
welg PP g over g P ng Learning Rate(LB K-FAC) 8e-3 — 4e-3 (71epoch)
training and momentum for adjusting the steepest vector calculated during Learning Rate(LB K-FAC no mixup) | de3 = 23 (7lepoch)
training. The hyperparameter used in this experiment is shown in right Mixup Alpha(SB K-FAC) 0.9
table. Mixup Alpha(LB K-FAC) 0.7
Epoch 150
Batch Size 128 or 2048
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Experimantal Result

Experiment2: Visualization of Loss Function in K-FAC Training using Mixup

How to plot this graph?

5 100 5 100

The blue line shows the loss value, and the red line
/ - shows the Top1- Accuracy. The horizontal axis shows the

amount of change in parameter space.
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Loss
Accuracy
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o
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1 S R —" f(a) = L (0" + ad)

0 . . , . . . . 0 0 . , ' ' , ’ ’ 0
-0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 -0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

(a) Loss Function obtained from Opti- (b) Loss Function obtained from Op- (X : scalar value, [-0.5,1.5] in the graph on the left
mization by K-FAC without Mixup  timization by K-FAC with Mixup
0 : Gaussian noise of the same dimension as the parameter

Fig24: One-dimensional linear interpolation diagram of the solution , . : .o :
obtained by training using K-FAC method 0*: Optimal solution in training (X-coordinate 0)
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Experimantal Result

Experiment2: Visualization of Loss Function in K-FAC Training using Mixup
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-0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 -0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

(a) Loss Function obtained from Opti- (b) Loss Function obtained from Op-
mization by K-FAC without Mixup  timization by K-FAC with Mixup

Fig25: One-dimensional linear interpolation diagram of the solution
obtained by training using K-FAC method

By linear interpolation of input data in large
mini-batch training, it can be confirmed that
convergence to Flat Minimum is explicitly
promofed in optimization of loss function
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Experimantal Result

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (LB comparison with and without Mixup)

1.0
B£ applying Mixup, generarizaﬁon preformance
obtained by SGD/K-FAC LB training are improved
-
0.8‘ o /\’s_\,\_,\_’__\".‘ fv\_~f—\__,\/\_/\,—'\ ,,,,,,,, N
/ — o
- T o : T ::A,._A—.'<—¢"~:~f"-7"”
A.e“"“":“’::' - i I e L i oy
a 0.6 - S ,
g ——= LB kfac with NONE / Acc:70.02% (epoch 71)
O A I . M . —— LB kfac with NONE / Acc:70.02% (epoch 71)
k = PPIyINg IVIIXUP \ '~ --- LB kfac with Mixup / Acc:72.74% (epoch 72)
2 0.4 - ' / —— LB kfac with Mixup / Acc:72.74% (epoch 72)
2 | > 0
I 2.72% lmproved (LB K'FAC) - —- LB sgd with NONE / Acc:62.50% (epoch 147)
,' / A I . M . — LB sgd with NONE / Acc:62.50% (epoch 148)
0. - {! PP'ying IXUP —-== LB sgd with Mixup / Acc:64.59% (epoch 141)
' , —— LB sgd with Mixup / Acc:64.59% (epoch 142)
’ 2.09% Improved (LB SGD) --- Train Accuracy
— Test Accuracy
0-0 ! | | | | | ! !
0 20 40 60 80 100 120 140

epoch

Fig26: Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method. SB shows batch size 128, LB shows batch size 2K
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Experimantal Result

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)
0.8

~ - ,\—"\\ﬂ— - A - ™ \,—ghv\/aw-\ lllll N -
K-FAC can converge faster =TT NN v .
0.7 - “" S e ekl _,,’ _._\_—.,-_-_..:% S Sl
,—w’_"'—\-~’~\——~ f"--_\‘--’-’\" ~"‘—Nﬁ’-v-~-’ 2% ‘dsﬂ,/s./
—-.——f/‘J - ~ /\/’\ N~ ,\/\~’ -
0.6 - ’v.-,./\’ 7 -
' “,’V _d”\l ” °
, ~ " = K-FAC achieved
_05- Y Pt better accuracy
-4 4
s of S A
S N . |
§ 0.4 - v, [ ——- SB kfac with Mixup / Acc:73.09% (epoch 71)
— ! ,' ,J’ — SB kfac with Mixup / Acc:73.09% (epoch 71)
S . A K-FAC ——- LB kfac with Mixup / Acc:72.74% (epoch 72)
' ',' : —— LB kfac with Mixup / Acc:72.74% (epoch 72)
- - -~ SB sgd with Mixup / Acc:66.47% (epoch 91)
0.2 - - SGD —— SB sgd with foup / Acc:66.47% (epoch 92)
: —==- LB sgd with Mixup / Acc:64.59% (epoch 141)
o1 - ' — LB sgd with Mixup / Acc:64.59% (epoch 142)
' - == Train Accuracy
—— Test Accuracy
0-0 | | ! ! | | ! |
0 20 40 60 80 100 120 140

Fig27: Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing. SB shows batch size 128, LB shows batch size 2K

epoch



4. Proposal to improve generarization 40

Experimantal Result

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)

0.85 —
SB kfac with Mixup / Acc:73.09% (epoch 71)
SB kfac with Mixup / Acc:73.09% (epoch 71)
0.80 - LB kfac with Mixup / Acc:71.71% (epoch 71)
LB kfac with Mixup / Acc:71.71% (epoch 71)
SB sgd with Mixup / Acc:65.75% (epoch 71)
0.75 - SB sgd with Mixup / Acc:65.75% (epoch 71)
) LB sgd with Mixup / Acc:61.53% (epoch 71)
g LB sgd with Mixup / Acc:61.53% (epoch 71) 3
§ 0.70 - Train Accuracy
— Test Accuracy
0.65 - <70
0.60 - K-FAC training can acheive better accuraci:
by comparing with SGD at the same epochs
0.55 - - T T T T T T /
60 70 80 90 100 110 120 130 140 150

epoch

F§g282:KZOOM : Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing (same epochs). SB shows batch size 128, LB shows batch
size
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Experimantal Result

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)

0.85 —
—-—= SB kfac with Mixup / Acc:73.09% (epoch 71)
— SB kfac with Mixup / Acc:73.09% (epoch 71)
080 |The accuracy degradation is 0.35% K-FAC T} --- LBKfac with Mixup / Acc:72.74% (epoch 72)
. — LB kfac with Mixup / Acc:72.74% (epoch 72)
! ) . .
~ JRAL NN ,' \--’\_V————\/\/ “ 'I ‘v’\_ r~/ ——- SB sgd with Mixup / Acc:66.47% (epoch 91) .
0.75 - ! Nes X SCD —— SB sgd with Mixup / Acc:66.47% (epoch 92)
O } ('\ — —== LB sgd with Mixup / Acc:64.59% (epoch 141)
S S & ,\ SES A ——<——w — LB sgd with Mixup / Acc:64.59% (epoch 142) 3
5 0.70 - at N m smTNP S m = Train Accuracy
i =T TTINmemmn = LT T TN e —— Test Accuracy /
§- ,”, \/ A - /s_f..-\./r\' T \s7
0.65 17 RN RN Without applying Mixup,
. A ' 72 _NZ A i H"l A d d f
AT B e ACCUuracy aegradarion
060l SANrAfT T of K-FAC is 1.47%
. /7 .
e . ] That of SGD is 0.03%
. The accuracy degradation is 1.88%
0-55 | | | ! | ! | !
60 70 80 90 100 110 120 130 140 150

epoch

Fig29: ZOOM : Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing. SB shows batch size 128, LB shows batch size 2K
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Experimantal Result

Experiment3: K-FAC Training with Smoothed Loss Function (K-FAC comparison with and without Mixup)

1.0
AT Nl TN N =N NN ST ——-. P o mm NN - -
/J—‘ — ~
/I —————————— B ———
0.8 - - \x\_/-/\/":’-»:::::::v::::\.—’:’,/,_~/\’~\Ia_,\\,_\A,\,\/,_../~_,\/.,\/\.—\~,.__,\-v_~
'W‘\: m‘w;“?“?‘gw — oS *‘- —
3 0.6 - .
g —== SB kfac mixup NONE / Acc:71.49% (epoch 71)
) . . — SB kfac mixup NONE / Acc:71.49% (epoch 71)
o
2 ,' Applymg M'XUP < - ==~ SB kfac mixup alpha = 0.9 / Acc:73.09% (epoch 71)
Q - | - i —_ . )
S 0.4 1.60% Improved (SB K—FAC) SB kfac m.lxup alpha = 0.9 / Acc:73.09% (epoch 71)
' —=~ LB kfac mixup NONE / Acc:70.02% (epoch 71)
,' Applying MiXUp < ——— LB kfac mixup NONE / Acc:70.02% (epoch 71)
0.2 - —== LB kfac mixup alpha = 0.7 / Acc:72.74% (epoch 72)
' 2.72% ImprQVed (LB K.FAC) —— LB kfac mixup alpha = 0.7 / Acc:72.74% (epoch 72)
-== Train Accuracy
— Test Accuracy
0.0 | ! ! ! ! ! ! !
0 20 40 60 80 100 120 140
epoch

Fig30: Training of CIFAR 10 in LeNet 5 using K-FAC method with Smoothing.SB shows batch size 128, LB shows batch size 2K
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Experimantal Result

Experiment3: K-FAC Training with Smoothed Loss Function (K-FAC comparison with and without Mixup)

0.80 — — —— >
—=—= SB kfac mixup NONE / Acc:71.49% (epoch 71) }Wﬂhouf Mixup
— SB kfac mixup NONE / Acc:71.49% (epoch 71) p

—-=—~- SB kfac mixup alpha = 0.9 / Acc:73.09% (epoch 71) } MiXUp ,/

—— SB kfac mixup alpha = 0.9 / Acc:73.09% (epoch 71)

0.76 1 ——- LB kfac mixup NONE / Acc:70.02% (epoch 71) e I . . |
 —— LB kfac mixup NONE / Acc:70.02% (epoch 71) — === Without M'XUP

0.78 -

> o074 7" LB kfac mixup alpha = 0.7 / Acc:72.74% (epoch 72) } M ) — .! :
© — LB kfac mixup alpha = 0.7 / Acc:72.74% (epoch 72) IXUP Tl"q,n,ng W|'|'h M|xu p/

- . o o

3 |1==- Train Accuracy o the accuracy degradation is 0.69%
v 0729 — Test Accuracy =T 7T /

3 —~—~— — o~ N

g without Mjxup, .

0.70 - A Trainin
N ~_ = The accuracy degradation is 1.47%

60 62 64 66 68 70 72 74
epoch
Fig31: ZOOM : Training of CIFAR 10 in LeNet 5 using K-FAC method with Smoothing.SB shows batch size 128, LB shows batch size 2K

By applying Mixup, generalization performance is improved
and performance degradation due to LB is reduced
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Conclusion

Our Work Position

* Data Parallel Distributed Deep Learning
* Second-Order Optimization
* Improve Generarization

Contribution

* Point out the problem of generalization performance degradation by second-order
optimization

* Validate whether it is possible to improve generalization performance degradation
problem by focusing on smoothness of loss function

* Discover shape change of loss function by Mixup

* Succeeded in suppressing degradation of generalization performance to less than half of
conventional methods

Future work

* Perform experiments with a larger data set and DNN model

* mathematical elucidation is required for the relationship between deterioration of
generalization performance due to a decrease in the number of updates and due to a
decline variance of the gradient
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Experimantal Result

Experiment3: SGD Training with Smoothed Loss Function (comparison with and without Mixup)

1.0
0.8
o 0.6 -
o
g SB sgd mixup NONE / Acc:62.53% (epoch 95)
H‘P —— SB sgd mixup NONE / Acc:62.53% (epoch 95)
2 54 - —-== SB sgd mixup alpha = 0.7 / Acc:66.47% (epoch 92)
= —— SB sgd mixup alpha = 0.7 / Acc:66.47% (epoch 92)
—== LB sgd mixup NONE / Acc:62.50% (epoch 148)
——— LB sgd mixup NONE / Acc:62.50% (epoch 148)
0.2 - - == LB sgd mixup alpha = 0.3 / Acc:64.59% (epoch 142)
' —— LB sgd mixup alpha = 0.3 / Acc:64.59% (epoch 142)
; -== Train Accuracy
— Test Accuracy
0.0 . . . . . . . T
0 20 40 60 80 100 120 140
epoch

Fig25: Training of CIFAR 10 in LeNet 5 using SGD method with Smoothing. SB shows batch size 128, LB shows batch size 2K



