
Hiroki Naganuma1, Rio Yokota2

1 School of Computing, Tokyo Institute of Technology
2 Global Scientific Information and Computing Center, Tokyo Institute of Technology

 A Performance Improvement Approach  
for Second-Order Optimization

in Large Mini-batch Training

May 14th, 2019, Cyprus.
2nd High Performance Machine Learning Workshop

(HPML2019)

　 Overview �2

Our Work Position

Key Takeaways

• Data Parallel Distributed Deep Learning
• Second-Order Optimization
• Improve Generarization

• Second-order optimization can converge faster than first-order optimization with low
generarization performance

• Smoothing loss function can improve second-order optimization performance

　 Agenda �3

Introduction / Motivation
• Accuracy ↗ Model Size and Data Size ↗
• Needs to Accelarate

Background / Problem
• Three Parallelism of Distributed Deep Learning
• Large Mini-Batch Training Problem
• Two Strategies

Second Order Optimization Approach
• Natural Gradient Descent
• K-FAC (Approximate Method)
• Experimantal Methodology and Result

Proposal to improve generarization

Conclusion

• Sharp Minima and Flat Minima
• Mixup Data Augmentation
• Smoothing Loss FunctionI
• Experimantal Methodology and Result

　 Agenda �4

Introduction / Motivation
• Accuracy ↗ Model Size and Data Size ↗
• Needs to Accelarate

Background / Problem
• Three Parallelism of Distributed Deep Learning
• Large Mini-Batch Training Problem
• Two Strategies

Second Order Optimization Approach
• Natural Gradient Descent
• K-FAC (Approximate Method)
• Experimantal Methodology and Result

Proposal to improve generarization

Conclusion

• Sharp Minima and Flat Minima
• Mixup Data Augmentation
• Smoothing Loss FunctionI
• Experimantal Methodology and Result

　 1. Introduction / Motivation
Improvement of recognition accuracy and increase of training time with increasing number of parameters of
convolutional neural network (CNN)

�5

DNNs with a lot of parameters tend to show high recognition accuracy

Fig1：[Y. Huang et al, 2018]

The figure shows the relationship between the recognition accuracy of ImageNet-1K 1000 class classification and the number of
parameters of DNN model.

ResNet50

Fig2：[H. Kaiming et al, 2015]

ResNet50 architecture

It takes 256GPU hours※ to train Resnet 50 with
25M parameters(Convergence to Top1-Accuracy
75.9%)
※In case using NVIDIA Tesla P100+ as GPUs  
+ https://www.nvidia.com/en-us/data-center/tesla-p100/

　 1. Introduction / Motivation
Importance and time required of hyperparameter tuning in deep learning �6

Fig3 : Pruning method in parameter tuning ref (https://optuna.org)

In deep learning, tuning of hyper-
parameters is essential 

Hyperparameters:
• Learning rate
• Batch size
• Number of training iterations
• Number of layers of neural network
• Number of channels 

Even with the strategy of pruning, many
trials with training to the end is
necessary [J. Bergstra et al. 2011]

× Multiple Evaluations

Time taken for hyper-parameter tuning
<

It takes 256GPU hours※ to train Resnet 50 with 25M
parameters(Convergence to Top1-Accuracy 75.9%)
※In case using NVIDIA Tesla P100+ as GPUs  
+ https://www.nvidia.com/en-us/data-center/tesla-p100/

https://optuna.org

　
Necessity of distributed deep learning �7

Hyper-parameter tuning is necessary,  
which requires a lot of time to obtain DNN with high recognition accuracy

((
Speeding up with 1 GPU is important, but there is a limit to speeding up

Needs to speed up by distributed deep learning

In large mini-batch training for accelerating,
the recognition accuracy finally obtained is degraded

× Multiple Evaluations
Time taken for
hyper-parameter
tuning

<
It takes 256GPU hours※ to train Resnet 50
with 25M parameters(Convergence to
Top1-Accuracy 75.9%)
※In case using NVIDIA Tesla P100+ as GPUs  
+ https://www.nvidia.com/en-us/data-center/tesla-p100/

1. Introduction / Motivation

　 Agenda �8

Introduction / Motivation
• Accuracy ↗ Model Size and Data Size ↗
• Needs to Accelarate

Background / Problem
• Three Parallelism of Distributed Deep Learning
• Large Mini-Batch Training Problem
• Two Strategies

Second Order Optimization Approach
• Natural Gradient Descent
• K-FAC (Approximate Method)
• Experimantal Methodology and Result

Proposal to improve generarization

Conclusion

• Sharp Minima and Flat Minima
• Mixup Data Augmentation
• Smoothing Loss FunctionI
• Experimantal Methodology and Result

　 �92. Background / Problem

A. Model Parallel/Data Parallel

C. Sync/Async

B. Parameter Server/Collective communication

• The parallelism of distributed deep learning is mainly the following three 
「A. What」「B. How」「C. When」

•「A. What」Data parallel is essential for speeding up
•「B. How」Adapt collective communication method for speeding up
•「C. When」There are pros and cons, and it is an unsolved problem that it is

better to adopt which. In this research, we deal with synchronous type as in the
previous research [J. Chen et al, 2018]

Three Parallelism of Distributed Deep Learning

Fig4: Model/Data Parallel

Fig5: How to communicate

Fig6: When does parameter update

　
Three Parallelism of Distributed Deep Learning

�102. Background / Problem

Expect speedup by increasing the batch size
=> Large Mini-Batch Training

Synchronous Data Parallel Distributed Deep Learninig

Fig7: Difference Between Distributed Deep Learning and Deep Learning

e.g. batch size = 1

e.g. batch size = 3

　
Three Parallelism of Distributed Deep Learning

�112. Background / Problem

Fig8 : Convergence accuracy and training time at SB/LB using SGD

同期型データ並列分散深層学習では 
バッチサイズを大きくすることで高速化を期待する

Validation Accuracy

LB training is fast but training
accuracy is low

SB training takes time to converge, but
the training accuracy is high

Small Mini-Batch Training
Large Mini-Batch Training

Synchronous Data Parallel 
Distributed Deep Learning  

 = Large Mini-Batch Training

Increasing Mini-Batch Size 
= |Input data used for one update|

Training with large mini-batch
(LB) in SGD is generally faster in
training time than with small mini-
batch (SB), but that the achievable

recognition accuracy is
degraded [Y. Yang et al. 2017]

Training Time

　
Difference between Large Mini-Batch Training and Small Mini-batch Training

�122. Background / Problem

Large Mini-batch Training is not the same optimization as Small Mini-Batch Training
There is a problem due to two differences

Fig9：Left figure (LB training update appearance), Right figure (SB training update appearance)

By Increasing the Batch-Size ,
It is expected to converge in more accurate

directions with less iterations

Loss Function Objective Function

: Train Data

Supervised Learning (Optimization Problem)

　
Difference between Large Mini-Batch Training and Small Mini-batch Training and Problems

�132. Background / Problem

Fig10：[E. Hoffer et al. 2018]

Problem 1.  
Decreased number of iterations (number of updates)

Problem2 .
The gradient of the objective function is more accurate
and the variance is reduced

=> But that doesn't allow for speeding up by
distributed deep learning

=> It is necessary to prevent the accuracy
degradation that is a side effect of speeding up

Fig11: Concept Skech of Sharp Minimum and Flat Minimum

In LB training, the noise is not
appropriate and generalization
performance is degraded [S.
Smith et al. 2018]

Good generalization is
expected because it is
possible to adjust noise in SB
training [S. Mandt et al 2017]

The recognition
accuracy does
not deteriorate
by increasing the
number of
iterations [E.
Hoffer et al.
2018]

　
Two Strategy to deal with Problems

�142. Background / Problem

In large mini-batch training, the data for each batch is
statistically stable, and using NGD has a large effect of
considering the curvature of the parameter space, and the
direction of one update vector can be calculated more
correctly [S. Amari 1998]. Convergence with fewer
iterations can be expected

By linear interpolation of the input data in large mini-batch
training, the convergence to Flat Minimum is promoted in
optimization of the loss function, and generalization
performance is aimed to be improved.

Strategy1.  
Use of natural gradient method (NGD)

Strategy 2.  
Smoothing the objective function

Problem 1.  
Decreased number of iterations
(number of updates)  
=> Have to converge with few iteration

Problem2 .
The gradient of the objective function is
more accurate and the variance is reduced 
=> Have to avoid SharpMinima

　 Agenda �15

Introduction / Motivation
• Accuracy ↗ Model Size and Data Size ↗
• Needs to Accelarate

Background / Problem
• Three Parallelism of Distributed Deep Learning
• Large Mini-Batch Training Problem
• Two Strategies

Second Order Optimization Approach
• Natural Gradient Descent
• K-FAC (Approximate Method)
• Experimantal Methodology and Result

Proposal to improve generarization

Conclusion

• Sharp Minima and Flat Minima
• Mixup Data Augmentation
• Smoothing Loss FunctionI
• Experimantal Methodology and Result

　

• Gradient Descent  
DNN has a large number of parameters 
-> Gradient method using loss function gradient that is easy to calculate is mainstream

• SGD; Stochastic Gradient Descent  
Large-scale Training data 
-> Randomly extract a small number of training cases (on-line stochastic optimization)  
-> Process multiple training data in parallel(mini-batch)

�16

: Parameter after times update

Gradient of loss function

: Learning Rate

Stochastic Gradient Descent Method using Mini-Batch

: mini-batch (randomly extract)

Mini-Batch Training
3. Second Order Optimization Approach

　
Two Strategy to deal with Problems

�172. Background / Problem

In large mini-batch training, the data for each batch is
statistically stable, and using NGD has a large effect of
considering the curvature of the parameter space, and the
direction of one update vector can be calculated more
correctly [S. Amari 1998]. Convergence with fewer
iterations can be expected

By linear interpolation of the input data in large mini-batch
training, the convergence to Flat Minimum is promoted in
optimization of the loss function, and generalization
performance is aimed to be improved.

Strategy1.  
Use of natural gradient method (NGD)

Strategy 2.  
Smoothing the objective function

Problem 1.  
Decreased number of iterations
(number of updates)  
=> Have to converge with few iteration

Problem2 .
The gradient of the objective function is
more accurate and the variance is reduced 
=> Have to avoid SharpMinima

　
�18

Natural Gradient Descent  
• An optimization method proposed by [S. Amari 1998] based

on information geometry
• Use Fisher information matrix as Riemann metric (= curvature

matrix)
• Set the update direction well and expect faster convergence

Gradient of Loss Function

: Fisher Information Matrix

Natural Gradient Descent (NGD)

Gradient of Loss Function
Stochastic Gradient Descent (SGD)

Gradient Descent and Natural Gradient Method
3. Second Order Optimization Approach

Stochastic Gradient Descent  
• It is difficult to get out of local solutions and plateaus
• When the learning rate is increased, the values vibrate

and diverge at the saddle point

Loss Function Objective Function

: Train Data

Supervised Learning (Optimization Problem)

　
�19

Gradient of Loss Function

: Fisher Information Matrix

Natural Gradient Descent (NGD)

Natural Gradient Method Pros and Cons in deep learning
3. Second Order Optimization Approach

Pros 
• It is expected to converge with a smaller number of

iterations compared to (an improved method of) SGD
• It is expected that model parameters can be updated in

the correct direction using the gradient curvature of the
statistically stable loss function when the batch size is large

Cons 
• Inverse calculation of huge Fisher information matrix (N x

N) is required for huge parameters (N)
• For example, about N = 3.5 × 106 (about 12 PB memory

consumption) for ResNet-50

Fig12: [J. Matt et al. 2017]

SGD

NGD

Natural Gradient  
Approximation Method=>

　
�20

Three strategies to Approximate the Natural Gradient (K-FAC)
3. Second Order Optimization Approach

Gradient of Loss Function

: Fisher Information Matrix

Natural Gradient Descent (NGD)

Block diagonal
approximation of Fisher
information matrix

NGD Approximation Method : K-FAC

Expectation
approximation using

Kronecker factorization

Inverse pseudomatrix of
Fisher's information matrix

It is difficult to calculate the inverse of Fisher
information matrix (FIM) in the update
equation, considering the number of
parameters of recent DNN.

3 Strategies to Approximate

①Approximate FIM (and inverse)  
N. Roux et al., 2008，D. Kingma et al., 2015， 
R. Grosse et al., 2015，[J. Martens et al., 2015]， 
P. Luo, 2016，[R. Grosse et al., 2016]， 
A. Botev et al., 2017，[J. Ba et al., 2017]
 
②Bring the FIM closer to the identity matrix 
K. Cho et al., 2013，G. Desjardins et al. 2015， 
B. Neyshabur et al., 2015，T. Salimans et al., 2016  
 
③Approximate update vector
S. Krishnan et al., 2017

Approximation
method  
targeted by  
this work :  
K-FAC

Fig13: [J. Martens et al., 2015]

　 3. Second Order Optimization Approach
Experimantal Methodology

�21

Data Set : CIFAR-10  
The CIFAR-10 dataset is a data set of 32 × 32 pixels (RGB)
color image labeled with 10 classes of {airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck}.

DNN Model : Lenet5 
Lenet5 which is a simple multilayer neural network model by the
structure proposed by LeCun et al was used as a DNN model.

Fig14：Category of training data set CIFAR-10 used in experiment and its sample example

Table1 : Network configuration of lenet5

Fig15 : Network configuration of lenet5

　 �223. Second Order Optimization Approach
Experimantal Methodology

Program for Training: Chainer, PyTorch 
Using Chainer, which is an open source software library for machine learning, we constructed the DNN
model and implemented its training with the programming language Python.
We use Chainer_K-FAC to implement distributed deep learning using K-FAC.
For visualization of the loss function, PyTorch which is an open source software library for machine learning
was used with reference to [L. Hao et al. 2018]

Computational Environment:（ABCI; AI Bridging Cloud Infrastructure) 
All experiments were performed on the ABCI(AI Bridging Cloud Infrastructure) supercomputer at AIST.
For the experiment, one computation node is used, and one node consists of NVIDIA Tesla V100 x 4GPU and Intel Xeon
Gold 6148 2.4 GHz, 20 Cores x 2CPU.
CentOS 7.4, Python 3.6.5, cuDNN 7.4, CUDA 9.2 are used as the software environment.

Training Strategy 
The model of the network is trained using mini-batch extracted randomly
from the training data, and SGD / K-FAC is used as the optimization
method. It is used that learning rate decay for stabilizing convergence,
weight decay for suppressing over training of values of parameters during
training and momentum for adjusting the steepest vector calculated during
training. The hyperparameter used in this experiment is shown in right
table.

Table2 : Hyper Parameter used in Experiment

　 �23

Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Advantage)

3. Second Order Optimization Approach
Experimantal Result

Fig16: Training of CIFAR 10 in LeNet5 using SGD/K-FAC method. SB shows batch size 128, LB shows batch size 2K.

K-FAC

SGD

K-FAC can converge faster

K-FAC achieved
better accuracy

　 �243. Second Order Optimization Approach
Experimantal Result

Fig17: ZOOM :Training of CIFAR 10 in LeNet5 using SGD/K-FAC method (same epochs). SB shows batch size 128, LB shows batch size 2K.

Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Advantage)

K-FAC

SGD

K-FAC training can acheive better accuracy
by comparing with SGD at the same iterations

　 �25

Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Disadvantage)

3. Second Order Optimization Approach
Experimantal Result

LB K-FAC training CANNOT acheive almost same accuracy by
increasing the number of iterations

The Accuracy
degradation of K-FAC
is 1.47%
That of SGD is 0.03%

LB SGD training can acheive almost
same accuracy by increasing the
number of iterationsFig18: ZOOM :Training of CIFAR 10 in LeNet5 using SGD/K-FAC method.

SB shows batch size 128, LB shows batch size 2K.

　 Agenda �26

Introduction / Motivation
• Accuracy ↗ Model Size and Data Size ↗
• Needs to Accelarate

Background / Problem
• Three Parallelism of Distributed Deep Learning
• Large Mini-Batch Training Problem
• Two Strategies

Second Order Optimization Approach
• Natural Gradient Descent
• K-FAC (Approximate Method)
• Experimantal Methodology and Result

Proposal to improve generarization

Conclusion

• Sharp Minima and Flat Minima
• Mixup Data Augmentation
• Smoothing Loss FunctionI
• Experimantal Methodology and Result

　
Two Strategy to deal with Problems

�272. Background / Problem

In large mini-batch training, the data for each batch is
statistically stable, and using NGD has a large effect of
considering the curvature of the parameter space, and the
direction of one update vector can be calculated more
correctly [S. Amari 1998]. Convergence with fewer
iterations can be expected

By linear interpolation of the input data in large mini-batch
training, the convergence to Flat Minimum is promoted in
optimization of the loss function, and generalization
performance is aimed to be improved.

Strategy1.  
Use of natural gradient method (NGD)

Strategy 2.  
Smoothing the objective function

Problem 1.  
Decreased number of iterations
(number of updates)  
=> Have to converge with few iteration

Problem2 .
The gradient of the objective function is
more accurate and the variance is reduced 
=> Have to avoid SharpMinima

　 4. Proposal to improve generarization
Sharp Minima and Flat Minima

�28

Q, Why does the generalization performance of large mini-batch training deteriorate?

-> Because it converges to SharpMinimum for LB (large batch size) and FlatMinimum for SB (small
batch size) [N. Keskar et al, 2017]

SharpMinimum :  
 
characterized by having
numerous small eigenvalues of
∇2f(x).  

Optimal solution
converged by LB Training

FlatMinimum :  
 
characterized by a significant
number of large positive
eigenvalues in ∇2f(x), and
tend to generalize less well 

Optimal solution
converged by SB Training

Fig19： A Conceptual Sketch of Flat and Sharp Minima

Loss

Variables (parameters)

Aim to converge on Flat Minimum, not Sharp Minimum 
-> Our Strategy : Use of Data Augmentation

　
Data Augmentation

�29

Data Augmentation  
• Generate training samples with artificial noise added to training data
• Especially in image recognition, clipping, inversion, deformation, addition of noise, RGB value manipulation,

etc. are common. [P. Y. Simard, et al., 2004]
• Performance improvement is expected by adding the generated image to the original data for training

Fig20：Data Augmentation (inversion / cut out example)

4. Proposal to improve generarization

　
Mixup: Data Augmentation Method for Linear Interpolation of Training Data

�30

Mixup [H. Zhang et al. 2018]
• Linear interpolation of both label / data from two data to
• Data Augmentation methods, such as Mixup, are not developed for the improvement of generalization performance

in large mini-batch training.
• However, as a solution to the reduced noise and variance that is a problem in large mini-batch training, we verified

whether generalization performance can be improved by playing the role of objective function smoothing.

Optimization Problem:

Generate a new training sample　　　　 as follows
From training data Which are randomly selected

Try Smoothing of Loss Function by Linear Interpolating Input Data x

4. Proposal to improve generarization

　 �31

Fig21：Example of Beta distribution (distribution chart in 10000 trials)

Mixup: Data Augmentation Method for Linear Interpolation of Training Data
4. Proposal to improve generarization

Mixup [H. Zhang et al. 2018]
• Linear interpolation of both label / data from two data to

Generate a new training sample　　　　 as follows
From training data Which are randomly selected

Thus, by using the beta distribution,  
finer tuning can be performed for interpolation of training data

　
Mixup: Data Augmentation Method for Linear Interpolation of Training Data
4. Proposal to improve generarization �32

Alpha=0.3 Alpha=0.5 Alpha=0.7 Alpha=1.0

Fig22：Example of the training image generated by Mixup
and the relationship between Beta distribution

Ship Frog Lam  
0.63

Lam  
0.02

Lam  
0.24

Lam  
0.41

Cat Bird Lam  
0.99

Lam  
0.04

Lam  
0.51

Lam  
0.47

Truck Horse Lam  
0.62

Lam  
0.09

Lam  
0.12

Lam  
0.10

　 �33

Ship Loss x λ Frog Loss x (1-λ)+ = Mixup (Ship and Frog) Loss

This image is used to evaluate Loss

Since λ = 0.242 this time, the loss is large if it can not be inferred as a Frog than Ship

Fig23：Example of learning image generated by Mixup and Lambda

Calculation method of training loss using Mixup
4. Proposal to improve generarization

　 �34
Experimantal Methodology
4. Proposal to improve generarization

Data Set : CIFAR-10  
The CIFAR-10 dataset is a data set of 32 × 32 pixels (RGB)
color image labeled with 10 classes of {airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck}.

DNN Model : Lenet5 
Lenet5 which is a simple multilayer neural network model by the
structure proposed by LeCun et al was used as a DNN model.

Fig14：Category of training data set CIFAR-10 used in experiment and its sample example

Table1 : Network configuration of lenet5

Fig15 : Network configuration of lenet5

　 �35
Experimantal Methodology
4. Proposal to improve generarization

Program for Training: Chainer, PyTorch 
Using Chainer, which is an open source software library for machine learning, we constructed the DNN
model and implemented its training with the programming language Python.
We use Chainer_K-FAC to implement distributed deep learning using K-FAC.
For visualization of the loss function, PyTorch which is an open source software library for machine learning
was used with reference to [L. Hao et al. 2018]

Computational Environment:（ABCI; AI Bridging Cloud Infrastructure) 
All experiments were performed on the ABCI(AI Bridging Cloud Infrastructure) supercomputer at AIST.
For the experiment, one computation node is used, and one node consists of NVIDIA Tesla V100 x 4GPU and Intel Xeon
Gold 6148 2.4 GHz, 20 Cores x 2CPU.
CentOS 7.4, Python 3.6.5, cuDNN 7.4, CUDA 9.2 are used as the software environment.

Training Strategy 
The model of the network is trained using mini-batch extracted randomly
from the training data, and SGD / K-FAC is used as the optimization
method. It is used that learning rate decay for stabilizing convergence,
weight decay for suppressing over training of values of parameters during
training and momentum for adjusting the steepest vector calculated during
training. The hyperparameter used in this experiment is shown in right
table.

Table2 : Hyper Parameter used in Experiment

　 �36

How to plot this graph?
The blue line shows the loss value, and the red line
shows the Top1- Accuracy. The horizontal axis shows the
amount of change in parameter space.

Experiment2: Visualization of Loss Function in K-FAC Training using Mixup

Fig24: One-dimensional linear interpolation diagram of the solution
obtained by training using K-FAC method

: scalar value, [-0.5,1.5] in the graph on the left

: Gaussian noise of the same dimension as the parameter

: Optimal solution in training (X-coordinate 0)

Experimantal Result
4. Proposal to improve generarization

　 �37
Experimantal Result
4. Proposal to improve generarization

Experiment2: Visualization of Loss Function in K-FAC Training using Mixup

By linear interpolation of input data in large
mini-batch training, it can be confirmed that
convergence to Flat Minimum is explicitly
promoted in optimization of loss function

Fig25: One-dimensional linear interpolation diagram of the solution
obtained by training using K-FAC method

　 �38

By applying Mixup, generarization preformance
obtained by SGD/K-FAC LB training are improved

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (LB comparison with and without Mixup)

Experimantal Result
4. Proposal to improve generarization

Applying Mixup

Applying Mixup

2.09% Improved (LB SGD)

2.72% Improved (LB K-FAC)

Fig26: Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method. SB shows batch size 128, LB shows batch size 2K

　 �39

K-FAC

SGD

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)

Experimantal Result
4. Proposal to improve generarization

K-FAC can converge faster

K-FAC achieved
better accuracy

Fig27: Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing. SB shows batch size 128, LB shows batch size 2K

　 �40

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)

Experimantal Result
4. Proposal to improve generarization

K-FAC

SGD

K-FAC training can acheive better accuracy
by comparing with SGD at the same epochs

Fig28: ZOOM : Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing (same epochs). SB shows batch size 128, LB shows batch
size 2K

　 �41

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)

Experimantal Result
4. Proposal to improve generarization

K-FAC

SGD

The accuracy degradation is 0.35%

The accuracy degradation is 1.88%

Without applying Mixup,  
the Accuracy degradation
of K-FAC is 1.47%
That of SGD is 0.03%

Fig29: ZOOM : Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing. SB shows batch size 128, LB shows batch size 2K

　 �42

Experiment3: K-FAC Training with Smoothed Loss Function (K-FAC comparison with and without Mixup)

Experimantal Result
4. Proposal to improve generarization

Fig30: Training of CIFAR 10 in LeNet 5 using K-FAC method with Smoothing.SB shows batch size 128, LB shows batch size 2K

Applying Mixup

Applying Mixup

2.72% Improved (LB K-FAC)

1.60% Improved (SB K-FAC)

　 �43

Experiment3: K-FAC Training with Smoothed Loss Function (K-FAC comparison with and without Mixup)

Experimantal Result
4. Proposal to improve generarization

Mixup

Without Mixup

Mixup

Without Mixup

Training with Mixup,  
the accuracy degradation is 0.69%

Training without Mixup,  
The accuracy degradation is 1.47%

By applying Mixup, generalization performance is improved  
and performance degradation due to LB is reduced

Fig31: ZOOM : Training of CIFAR 10 in LeNet 5 using K-FAC method with Smoothing.SB shows batch size 128, LB shows batch size 2K

　 Agenda �44

Introduction / Motivation
• Accuracy ↗ Model Size and Data Size ↗
• Needs to Accelarate

Background / Problem
• Three Parallelism of Distributed Deep Learning
• Large Mini-Batch Training Problem
• Two Strategies

Second Order Optimization Approach
• Natural Gradient Descent
• K-FAC (Approximate Method)
• Experimantal Methodology and Result

Proposal to improve generarization

Conclusion

• Sharp Minima and Flat Minima
• Mixup Data Augmentation
• Smoothing Loss FunctionI
• Experimantal Methodology and Result

　 Conclusion �45

Our Work Position

Contribution

• Data Parallel Distributed Deep Learning
• Second-Order Optimization
• Improve Generarization

• Point out the problem of generalization performance degradation by second-order
optimization

• Validate whether it is possible to improve generalization performance degradation
problem by focusing on smoothness of loss function

• Discover shape change of loss function by Mixup
• Succeeded in suppressing degradation of generalization performance to less than half of

conventional methods

Future work
• Perform experiments with a larger data set and DNN model
• mathematical elucidation is required for the relationship between deterioration of

generalization performance due to a decrease in the number of updates and due to a
decline variance of the gradient

　 Reference �46

[Y. Huang et al, 2018] GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, arXiv preprint arXiv:1811.06965. 
[H. Kaiming et al, 2015] Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition, p. 770--778 
[J. Bergstra et al. 2011] Algorithms for Hyper-Parameter Optimization, NIPS 2011 
[Y. Yang et al. 2017] Large Batch Training of Convolutional Networks, arXiv preprint arXiv:1708.03888. 
[E. Hoffer et al. 2017] Train longer, generalize better: closing the generalization gap in large batch training of neural networks, NIPS 2017 
[S. Mandt et al. 2017] Stochastic Gradient Descent as Approximate Bayesian Inference, Journal of Machine Learning Research, 18 1-35 
[S. Smith et al. 2018] A Bayesian Perspective on Generalization and Stochastic Gradient Descent, ICLR 2018 
[S. Amari 1998] Natural gradient works efficiently in learning, Neural Comput., vol. 10, no. 2, pp. 251–276
[J. Martens et al., 2015] Optimizing Neural Networks with Kronecker-factored Approximate Curvature, ICML 2015
[R. Grosse et al., 2016] Scaling up natural gradient by sparsely factorizing the inverse fisher matrix, ICML 2015 
[N. Keskar et al, 2017] On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, International Conference on Learning Representations 
[J. Chen et al, 2018] Revisiting Distributed Synchronous SGD, ICLR 2018 
[A. Krizhevsky et al 2012] ImageNet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems 25, 1097–1105
[J. Dean et al 2012] Large Scale Distributed Deep Networks, International Conference on Neural Information Processing Systems, vol. 1, p. 1223–1231
[S. Gupta et al 2017] Deep Learning with Limited Numerical Precision, International Conference on Machine Learning 
[Goyal et al. 2017] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, arXiv preprint arXiv:1706.02677. 
[J. Chen et al. 2017] Revisiting Distributed Synchronous SGD, ICLR 2018 
[N. Keskar et al, 2017] On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, International Conference on Learning Representations 
[Rissanen, 1978] Modeling by shortest data description, Automatica 14 (5) (1978) 465–471 
[W. Wen et al, 2018] SmoothOut: Smoothing Out Sharp Minima to Improve Generalization in Deep Learning, arXiv preprint arXiv:1805.07898. 
[R. Kleinberg et al, 2018] An Alternative View: When Does SGD Escape Local Minima?, ICML 2018

Thanks! 
Q&A

Backup

　 �49

Experiment3: SGD Training with Smoothed Loss Function (comparison with and without Mixup)

Experimantal Result
4. Proposal to improve generarization

Fig25: Training of CIFAR 10 in LeNet 5 using SGD method with Smoothing. SB shows batch size 128, LB shows batch size 2K

