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　 Overview �2

Our Work Position

Key Takeaways

• Data Parallel Distributed Deep Learning 
• Second-Order Optimization 
• Improve Generarization

• Second-order optimization can converge faster than first-order optimization with low 
generarization performance 

• Smoothing loss function can improve second-order optimization performance
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　 1. Introduction / Motivation
Improvement of recognition accuracy and increase of training time with increasing number of parameters of 
convolutional neural network (CNN)

�5

DNNs with a lot of parameters tend to show high recognition accuracy

Fig1：[Y. Huang et al, 2018]

The figure shows the relationship between the recognition accuracy of ImageNet-1K 1000 class classification and the number of 
parameters of DNN model.

ResNet50

Fig2：[H. Kaiming et al, 2015]

ResNet50 architecture

It takes 256GPU hours※ to train Resnet 50 with 
25M parameters(Convergence to Top1-Accuracy 
75.9%)
※In case using NVIDIA Tesla P100+ as GPUs  
+ https://www.nvidia.com/en-us/data-center/tesla-p100/



　 1. Introduction / Motivation
Importance and time required of hyperparameter tuning in deep learning �6

Fig3 : Pruning method in parameter tuning  ref (https://optuna.org)

In deep learning, tuning of hyper-
parameters is essential 

Hyperparameters: 
• Learning rate 
• Batch size 
• Number of training iterations 
• Number of layers of neural network 
• Number of channels 

Even with the strategy of pruning, many 
trials with training to the end is 
necessary [J. Bergstra et al. 2011]

× Multiple Evaluations

Time taken for hyper-parameter tuning
< 

It takes 256GPU hours※ to train Resnet 50 with 25M 
parameters(Convergence to Top1-Accuracy 75.9%)
※In case using NVIDIA Tesla P100+ as GPUs  
+ https://www.nvidia.com/en-us/data-center/tesla-p100/

https://optuna.org


　 
Necessity of distributed deep learning �7

Hyper-parameter tuning is necessary,  
which requires a lot of time to obtain DNN with high recognition accuracy

( ( 
Speeding up with 1 GPU is important, but there is a limit to speeding up

Needs to speed up by distributed deep learning

In large mini-batch training for accelerating,  
the recognition accuracy finally obtained is degraded

× Multiple Evaluations
Time taken for 
hyper-parameter 
tuning

< 
It takes 256GPU hours※ to train Resnet 50 
with 25M parameters(Convergence to 
Top1-Accuracy 75.9%)
※In case using NVIDIA Tesla P100+ as GPUs  
+ https://www.nvidia.com/en-us/data-center/tesla-p100/

1. Introduction / Motivation



　 Agenda �8

Introduction / Motivation
• Accuracy ↗ Model Size and Data Size ↗ 
• Needs to Accelarate

Background / Problem
• Three Parallelism of Distributed Deep Learning 
• Large Mini-Batch Training Problem 
• Two Strategies

Second Order Optimization Approach
• Natural Gradient Descent 
• K-FAC (Approximate Method) 
• Experimantal Methodology and Result

Proposal to improve generarization

Conclusion

• Sharp Minima and Flat Minima 
• Mixup Data Augmentation 
• Smoothing Loss FunctionI 
• Experimantal Methodology and Result



　 �92. Background / Problem

A. Model Parallel/Data Parallel

C. Sync/Async

B. Parameter Server/Collective communication

• The parallelism of distributed deep learning is mainly the following three 
「A. What」「B. How」「C. When」 

•「A. What」Data parallel is essential for speeding up 
•「B. How」Adapt collective communication method for speeding up 
•「C. When」There are pros and cons, and it is an unsolved problem that it is 

better to adopt which. In this research, we deal with synchronous type as in the 
previous research [J. Chen et al, 2018]

Three Parallelism of Distributed Deep Learning

Fig4: Model/Data Parallel

Fig5: How to communicate

Fig6: When does parameter update



　 
Three Parallelism of Distributed Deep Learning

�102. Background / Problem

Expect speedup by increasing the batch size 
=> Large Mini-Batch Training

Synchronous Data Parallel Distributed Deep Learninig

Fig7: Difference Between Distributed Deep Learning and Deep Learning

e.g. batch size = 1

e.g. batch size = 3



　 
Three Parallelism of Distributed Deep Learning

�112. Background / Problem

Fig8 : Convergence accuracy and training time at SB/LB using SGD

同期型データ並列分散深層学習では 
バッチサイズを大きくすることで高速化を期待する

Validation Accuracy

LB training is fast but training 
accuracy is low

SB training takes time to converge, but 
the training accuracy is high

Small Mini-Batch Training
Large Mini-Batch Training

Synchronous Data Parallel 
Distributed Deep Learning  

 = Large Mini-Batch Training

Increasing Mini-Batch Size 
= |Input data used for one update|

Training with large mini-batch 
(LB) in SGD is generally faster in 
training time than with small mini-
batch (SB), but that the achievable 

recognition accuracy is 
degraded [Y. Yang et al. 2017]

Training Time



　 
Difference between Large Mini-Batch Training and Small Mini-batch Training

�122. Background / Problem

Large Mini-batch Training is not the same optimization as Small Mini-Batch Training 
There is a problem due to two differences

Fig9：Left figure (LB training update appearance), Right figure (SB training update appearance)

By Increasing the Batch-Size      ,  
It is expected to converge in more accurate 

directions with less iterations

Loss Function Objective Function

: Train Data

Supervised Learning (Optimization Problem)



　 
Difference between Large Mini-Batch Training and Small Mini-batch Training and Problems

�132. Background / Problem

Fig10：[E. Hoffer et al. 2018]

Problem 1.  
Decreased number of iterations (number of updates)

Problem2 .  
The gradient of the objective function is more accurate 
and the variance is reduced

=> But that doesn't allow for speeding up by 
distributed deep learning

=> It is necessary to prevent the accuracy 
degradation that is a side effect of speeding up

Fig11: Concept Skech of Sharp Minimum and Flat Minimum

In LB training, the noise is not 
appropriate and generalization 
performance is degraded [S. 
Smith et al. 2018]

Good generalization is 
expected because it is 
possible to adjust noise in SB 
training [S. Mandt et al 2017]

The recognition 
accuracy does 
not deteriorate 
by increasing the 
number of 
iterations [E. 
Hoffer et al. 
2018]



　 
Two Strategy to deal with Problems

�142. Background / Problem

In large mini-batch training, the data for each batch is 
statistically stable, and using NGD has a large effect of 
considering the curvature of the parameter space, and the 
direction of one update vector can be calculated more 
correctly [S. Amari 1998]. Convergence with fewer 
iterations can be expected

By linear interpolation of the input data in large mini-batch 
training, the convergence to Flat Minimum is promoted in 
optimization of the loss function, and generalization 
performance is aimed to be improved.

Strategy1.  
Use of natural gradient method (NGD)

Strategy 2.  
Smoothing the objective function

Problem 1.  
Decreased number of iterations 
(number of updates)  
=> Have to converge with few iteration

Problem2 .  
The gradient of the objective function is 
more accurate and the variance is reduced 
=> Have to avoid SharpMinima
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• Gradient Descent  
DNN has a large number of parameters 
-> Gradient method using loss function gradient that is easy to calculate is mainstream 

• SGD; Stochastic Gradient Descent  
Large-scale Training data 
-> Randomly extract a small number of training cases (on-line stochastic optimization)  
-> Process multiple training data in parallel(mini-batch) 

   

�16

: Parameter after     times update

Gradient of loss function

: Learning Rate

Stochastic Gradient Descent Method using Mini-Batch

: mini-batch (randomly extract)

Mini-Batch Training
3. Second Order Optimization Approach



　 
Two Strategy to deal with Problems

�172. Background / Problem

In large mini-batch training, the data for each batch is 
statistically stable, and using NGD has a large effect of 
considering the curvature of the parameter space, and the 
direction of one update vector can be calculated more 
correctly [S. Amari 1998]. Convergence with fewer 
iterations can be expected

By linear interpolation of the input data in large mini-batch 
training, the convergence to Flat Minimum is promoted in 
optimization of the loss function, and generalization 
performance is aimed to be improved.

Strategy1.  
Use of natural gradient method (NGD)

Strategy 2.  
Smoothing the objective function

Problem 1.  
Decreased number of iterations 
(number of updates)  
=> Have to converge with few iteration

Problem2 .  
The gradient of the objective function is 
more accurate and the variance is reduced 
=> Have to avoid SharpMinima
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Natural Gradient Descent  
• An optimization method proposed by [S. Amari 1998] based 

on information geometry 
• Use Fisher information matrix as Riemann metric (= curvature 

matrix) 
• Set the update direction well and expect faster convergence 

Gradient of Loss Function

: Fisher Information Matrix

Natural Gradient Descent (NGD)

Gradient of Loss Function
Stochastic Gradient Descent (SGD)

Gradient Descent and Natural Gradient Method
3. Second Order Optimization Approach

Stochastic Gradient Descent  
• It is difficult to get out of local solutions and plateaus 
• When the learning rate is increased, the values vibrate 

and diverge at the saddle point

Loss Function Objective Function

: Train Data

Supervised Learning (Optimization Problem)
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Gradient of Loss Function

: Fisher Information Matrix

Natural Gradient Descent (NGD)

Natural Gradient Method Pros and Cons in deep learning
3. Second Order Optimization Approach

Pros 
• It is expected to converge with a smaller number of 

iterations compared to (an improved method of) SGD 
• It is expected that model parameters can be updated in 

the correct direction using the gradient curvature of the 
statistically stable loss function when the batch size is large

Cons 
• Inverse calculation of huge Fisher information matrix (N x 

N) is required for huge parameters (N) 
• For example, about N = 3.5 × 106 (about 12 PB memory 

consumption) for ResNet-50

Fig12: [J. Matt et al. 2017]

SGD

NGD 

Natural Gradient  
Approximation Method=>
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Three strategies to Approximate the Natural Gradient (K-FAC)
3. Second Order Optimization Approach

Gradient of Loss Function

: Fisher Information Matrix

Natural Gradient Descent (NGD)

Block diagonal 
approximation of Fisher 
information matrix

NGD Approximation Method : K-FAC

Expectation 
approximation using 

Kronecker factorization

Inverse pseudomatrix of 
Fisher's information matrix

It is difficult to calculate the inverse of Fisher 
information matrix (FIM) in the update 
equation, considering the number of 
parameters of recent DNN.

3 Strategies to Approximate

①Approximate FIM (and inverse)  
N. Roux et al., 2008，D. Kingma et al., 2015， 
R. Grosse et al., 2015，[J. Martens et al., 2015]， 
P. Luo, 2016，[R. Grosse et al., 2016]， 
A. Botev et al., 2017，[J. Ba et al., 2017]  
 
②Bring the FIM closer to the identity matrix 
K. Cho et al., 2013，G. Desjardins et al. 2015， 
B. Neyshabur et al., 2015，T. Salimans et al., 2016  
 
③Approximate update vector     
S. Krishnan et al., 2017 

Approximation 
method  
targeted by  
this work :  
K-FAC

Fig13: [J. Martens et al., 2015]



　 3. Second Order Optimization Approach
Experimantal Methodology

�21

Data Set : CIFAR-10  
The CIFAR-10 dataset is a data set of 32 × 32 pixels (RGB) 
color image labeled with 10 classes of {airplane, 
automobile, bird, cat, deer, dog, frog, horse, ship, truck}.

DNN Model : Lenet5 
Lenet5 which is a simple multilayer neural network model by the 
structure proposed by LeCun et al was used as a DNN model.

Fig14：Category of training data set CIFAR-10 used in experiment and its sample example

Table1 : Network configuration of lenet5

Fig15 : Network configuration of lenet5



　 �223. Second Order Optimization Approach
Experimantal Methodology

Program for Training: Chainer, PyTorch 
Using Chainer, which is an open source software library for machine learning, we constructed the DNN 
model and implemented its training with the programming language Python. 
We use Chainer_K-FAC to implement distributed deep learning using K-FAC. 
For visualization of the loss function, PyTorch which is an open source software library for machine learning 
was used with reference to [L. Hao et al. 2018]

Computational Environment:（ABCI; AI Bridging Cloud Infrastructure) 
All experiments were performed on the ABCI(AI Bridging Cloud Infrastructure) supercomputer at AIST. 
For the experiment, one computation node is used, and one node consists of NVIDIA Tesla V100 x 4GPU and Intel Xeon 
Gold 6148 2.4 GHz, 20 Cores x 2CPU. 
CentOS 7.4, Python 3.6.5, cuDNN 7.4, CUDA 9.2 are used as the software environment.

Training Strategy 
The model of the network is trained using mini-batch extracted randomly 
from the training data, and SGD / K-FAC is used as the optimization 
method. It is used that learning rate decay for stabilizing convergence, 
weight decay for suppressing over training of values of parameters during 
training and momentum for adjusting the steepest vector calculated during 
training. The hyperparameter used in this experiment is shown in right 
table.

Table2 : Hyper Parameter used in Experiment   
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Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Advantage) 

3. Second Order Optimization Approach
Experimantal Result

Fig16: Training of CIFAR 10 in LeNet5 using SGD/K-FAC method. SB shows batch size 128, LB shows batch size 2K.

K-FAC

SGD

K-FAC can converge faster

K-FAC achieved 
better accuracy



　 �243. Second Order Optimization Approach
Experimantal Result

Fig17: ZOOM :Training of CIFAR 10 in LeNet5 using SGD/K-FAC method (same epochs). SB shows batch size 128, LB shows batch size 2K.

Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Advantage) 

K-FAC

SGD

K-FAC training can acheive better accuracy 
by comparing with SGD at the same iterations
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Experiment1: Training by SGD/K-FAC method without Smoothing etc. (K-FAC Disadvantage) 

3. Second Order Optimization Approach
Experimantal Result

LB K-FAC training CANNOT acheive almost same accuracy by 
increasing the number of iterations

The Accuracy 
degradation of K-FAC  
is 1.47% 
That of SGD is 0.03%

LB SGD training can acheive almost 
same accuracy by increasing the 
number of iterationsFig18: ZOOM :Training of CIFAR 10 in LeNet5 using SGD/K-FAC method. 

SB shows batch size 128, LB shows batch size 2K.
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Two Strategy to deal with Problems

�272. Background / Problem

In large mini-batch training, the data for each batch is 
statistically stable, and using NGD has a large effect of 
considering the curvature of the parameter space, and the 
direction of one update vector can be calculated more 
correctly [S. Amari 1998]. Convergence with fewer 
iterations can be expected

By linear interpolation of the input data in large mini-batch 
training, the convergence to Flat Minimum is promoted in 
optimization of the loss function, and generalization 
performance is aimed to be improved.

Strategy1.  
Use of natural gradient method (NGD)

Strategy 2.  
Smoothing the objective function

Problem 1.  
Decreased number of iterations 
(number of updates)  
=> Have to converge with few iteration

Problem2 .  
The gradient of the objective function is 
more accurate and the variance is reduced 
=> Have to avoid SharpMinima



　 4. Proposal to improve generarization
Sharp Minima and Flat Minima

�28

Q, Why does the generalization performance of large mini-batch training deteriorate?

-> Because it converges to SharpMinimum for LB (large batch size) and FlatMinimum for SB (small 
batch size) [N. Keskar et al, 2017]

SharpMinimum :  
 
characterized by having 
numerous small eigenvalues of 
∇2f(x).  

Optimal solution 
converged by LB Training

FlatMinimum :  
 
characterized by a significant 
number of large positive 
eigenvalues in ∇2f(x), and 
tend to generalize less well 

Optimal solution 
converged by SB Training

Fig19： A Conceptual Sketch of Flat and Sharp Minima

Loss

Variables (parameters)

Aim to converge on Flat Minimum, not Sharp Minimum 
-> Our Strategy : Use of Data Augmentation



　 
Data Augmentation

�29

Data Augmentation  
• Generate training samples with artificial noise added to training data 
• Especially in image recognition, clipping, inversion, deformation, addition of noise, RGB value manipulation, 

etc. are common. [P. Y. Simard, et al., 2004] 
• Performance improvement is expected by adding the generated image to the original data for training

Fig20：Data Augmentation  (inversion / cut out example)

4. Proposal to improve generarization



　 
Mixup: Data Augmentation Method for Linear Interpolation of Training Data

�30

Mixup [H. Zhang et al. 2018] 
• Linear interpolation of both label / data from two data to 
• Data Augmentation methods, such as Mixup, are not developed for the improvement of generalization performance 

in large mini-batch training. 
• However, as a solution to the reduced noise and variance that is a problem in large mini-batch training, we verified 

whether generalization performance can be improved by playing the role of objective function smoothing.

Optimization Problem: 

Generate a new training sample　　　　 as follows 
From training data Which are randomly selected  

Try Smoothing of Loss Function by Linear Interpolating Input Data x

4. Proposal to improve generarization
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Fig21：Example of Beta distribution (distribution chart in 10000 trials)

Mixup: Data Augmentation Method for Linear Interpolation of Training Data
4. Proposal to improve generarization

Mixup [H. Zhang et al. 2018]  
• Linear interpolation of both label / data from two data to

Generate a new training sample　　　　 as follows 
From training data Which are randomly selected  

Thus, by using the beta distribution,  
finer tuning can be performed for interpolation of training data



　 
Mixup: Data Augmentation Method for Linear Interpolation of Training Data
4. Proposal to improve generarization �32

Alpha=0.3 Alpha=0.5 Alpha=0.7 Alpha=1.0

Fig22：Example of the training image generated by Mixup 
and the relationship between Beta distribution

Ship Frog Lam  
0.63

Lam  
0.02

Lam  
0.24

Lam  
0.41

Cat Bird Lam  
0.99

Lam  
0.04

Lam  
0.51

Lam  
0.47

Truck Horse Lam  
0.62

Lam  
0.09

Lam  
0.12

Lam  
0.10
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Ship Loss x λ Frog Loss x (1-λ)+ = Mixup (Ship and Frog) Loss

This image is used to evaluate Loss

Since λ = 0.242 this time, the loss is large if it can not be inferred as a Frog than Ship

Fig23：Example of learning image generated by Mixup and Lambda

Calculation method of training loss using Mixup
4. Proposal to improve generarization
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Experimantal Methodology
4. Proposal to improve generarization

Data Set : CIFAR-10  
The CIFAR-10 dataset is a data set of 32 × 32 pixels (RGB) 
color image labeled with 10 classes of {airplane, 
automobile, bird, cat, deer, dog, frog, horse, ship, truck}.

DNN Model : Lenet5 
Lenet5 which is a simple multilayer neural network model by the 
structure proposed by LeCun et al was used as a DNN model.

Fig14：Category of training data set CIFAR-10 used in experiment and its sample example

Table1 : Network configuration of lenet5

Fig15 : Network configuration of lenet5
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Experimantal Methodology
4. Proposal to improve generarization

Program for Training: Chainer, PyTorch 
Using Chainer, which is an open source software library for machine learning, we constructed the DNN 
model and implemented its training with the programming language Python. 
We use Chainer_K-FAC to implement distributed deep learning using K-FAC. 
For visualization of the loss function, PyTorch which is an open source software library for machine learning 
was used with reference to [L. Hao et al. 2018]

Computational Environment:（ABCI; AI Bridging Cloud Infrastructure) 
All experiments were performed on the ABCI(AI Bridging Cloud Infrastructure) supercomputer at AIST. 
For the experiment, one computation node is used, and one node consists of NVIDIA Tesla V100 x 4GPU and Intel Xeon 
Gold 6148 2.4 GHz, 20 Cores x 2CPU. 
CentOS 7.4, Python 3.6.5, cuDNN 7.4, CUDA 9.2 are used as the software environment.

Training Strategy 
The model of the network is trained using mini-batch extracted randomly 
from the training data, and SGD / K-FAC is used as the optimization 
method. It is used that learning rate decay for stabilizing convergence, 
weight decay for suppressing over training of values of parameters during 
training and momentum for adjusting the steepest vector calculated during 
training. The hyperparameter used in this experiment is shown in right 
table.

Table2 : Hyper Parameter used in Experiment   
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How to plot this graph?  
The blue line shows the loss value, and the red line 
shows the Top1- Accuracy. The horizontal axis shows the 
amount of change in parameter space. 

Experiment2: Visualization of Loss Function in K-FAC Training using Mixup  

Fig24: One-dimensional linear interpolation diagram of the solution 
obtained by training using K-FAC method

: scalar value, [-0.5,1.5] in the graph on the left

: Gaussian noise of the same dimension as the parameter

: Optimal solution in training (X-coordinate 0)

Experimantal Result
4. Proposal to improve generarization
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Experimantal Result
4. Proposal to improve generarization

Experiment2: Visualization of Loss Function in K-FAC Training using Mixup  

By linear interpolation of input data in large 
mini-batch training, it can be confirmed that 
convergence to Flat Minimum is explicitly 
promoted in optimization of loss function

Fig25: One-dimensional linear interpolation diagram of the solution 
obtained by training using K-FAC method
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By applying Mixup, generarization preformance 
obtained by SGD/K-FAC LB training are improved

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (LB comparison with and without Mixup)

Experimantal Result
4. Proposal to improve generarization

Applying Mixup

Applying Mixup

2.09% Improved (LB SGD)

2.72% Improved (LB K-FAC)

Fig26: Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method. SB shows batch size 128, LB shows batch size 2K
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K-FAC

SGD

Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)

Experimantal Result
4. Proposal to improve generarization

K-FAC can converge faster

K-FAC achieved 
better accuracy

Fig27: Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing. SB shows batch size 128, LB shows batch size 2K
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Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)

Experimantal Result
4. Proposal to improve generarization

K-FAC

SGD

K-FAC training can acheive better accuracy 
by comparing with SGD at the same epochs

Fig28: ZOOM : Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing (same epochs). SB shows batch size 128, LB shows batch 
size 2K
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Experiment3: SGD/K-FAC Training with Smoothed Loss Function (with Mixup comparison SGD and K-FAC)

Experimantal Result
4. Proposal to improve generarization

K-FAC

SGD

The accuracy degradation is 0.35%

The accuracy degradation is 1.88%

Without applying Mixup,  
the Accuracy degradation 
of K-FAC  is 1.47% 
That of SGD is 0.03%

Fig29: ZOOM : Training of CIFAR 10 in LeNet 5 using SGD/K-FAC method with Smoothing. SB shows batch size 128, LB shows batch size 2K



　 �42

Experiment3: K-FAC Training with Smoothed Loss Function (K-FAC comparison with and without Mixup)

Experimantal Result
4. Proposal to improve generarization

Fig30: Training of CIFAR 10 in LeNet 5 using K-FAC method with Smoothing.SB shows batch size 128, LB shows batch size 2K

Applying Mixup

Applying Mixup

2.72% Improved (LB K-FAC)

1.60% Improved (SB K-FAC)
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Experiment3: K-FAC Training with Smoothed Loss Function (K-FAC comparison with and without Mixup)

Experimantal Result
4. Proposal to improve generarization

Mixup

Without Mixup

Mixup

Without Mixup

Training with Mixup,  
the accuracy degradation is 0.69%

Training without Mixup,  
The accuracy degradation is 1.47%

By applying Mixup, generalization performance is improved  
and performance degradation due to LB is reduced

Fig31: ZOOM : Training of CIFAR 10 in LeNet 5 using K-FAC method with Smoothing.SB shows batch size 128, LB shows batch size 2K
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Our Work Position

Contribution

• Data Parallel Distributed Deep Learning 
• Second-Order Optimization 
• Improve Generarization

• Point out the problem of generalization performance degradation by second-order 
optimization 

• Validate whether it is possible to improve generalization performance degradation 
problem by focusing on smoothness of loss function 

• Discover shape change of loss function by Mixup 
• Succeeded in suppressing degradation of generalization performance to less than half of 

conventional methods

Future work
• Perform experiments with a larger data set and DNN model  
• mathematical elucidation is required for the relationship between deterioration of 

generalization performance due to a decrease in the number of updates and due to a 
decline variance of the gradient
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Experiment3: SGD Training with Smoothed Loss Function (comparison with and without Mixup)

Experimantal Result
4. Proposal to improve generarization

Fig25: Training of CIFAR 10 in LeNet 5 using SGD method with Smoothing. SB shows batch size 128, LB shows batch size 2K


